Chapter: All

Q. 1 A) Solve Multiple choice questions.

1) The ratio of the corresponding sides of two similar triangles is $2: 3$. If the area of the smaller triangle is $100 \mathrm{~cm}^{2}$, find the area of the larger triangle.
(a) $252 \mathrm{~cm}^{2}$
(b) $522 \mathrm{~cm}^{2}$
(c) $225 \mathrm{~cm}^{2}$
(d) $255 \mathrm{~cm}^{2}$
2)

$\square A B C D$ is cyclic. If $\angle B=110^{\circ}$, then find measures of $\angle \mathrm{D}$.
3)
$\Delta \mathrm{LMN} \sim \Delta \mathrm{HIJ}$ and $\frac{\mathrm{LM}}{\mathrm{HI}}=\frac{2}{3}$ then \qquad
(a) $\Delta \mathrm{LMN}$ is a smaller triangle.
(b) $\Delta \mathrm{HIJ}$ is a smaller triangle.
(c) both triangles are congruent.
(d) can't say
4) In fig, seg $D E \| \operatorname{seg} B C$, identify correct statement.

(a) $\quad \frac{\mathrm{AD}}{\mathrm{DB}}=\frac{\mathrm{AE}}{\mathrm{AC}}$
(b) $\quad \frac{A D}{D B}=\frac{A B}{A C}$
(c) $\quad \frac{\mathrm{AD}}{\mathrm{DB}}=\frac{\mathrm{EC}}{\mathrm{AC}}$
(d) $\quad \frac{\mathrm{AD}}{\mathrm{DB}}=\frac{\mathrm{AE}}{\mathrm{EC}}$
B) Solve the following questions.

1) In the figure, seg $A B$ and seg $A D$ are tangent segments drawn to a circle with centre C from exterior point A, then prove that: $\angle A=\frac{1}{2}[m(\operatorname{arc} B Y D)-m(\operatorname{arc} B X D)]$.

2) Base of a triangle is 9 and height is 5 . Base of another triangle is 10 and height is 6 . Find
the ratio of areas of these triangles.
3)

Construct $\angle \mathrm{ABC}=60^{\circ}$ and bisect it.
4)

From given figure, In $\triangle A B C, A B \perp B C, A B=B C, A C=2 \sqrt{2}$ then $l(A B)=$?

Q. 2 A) Complete the following Activities. (Any two)
1)

In fig., $\angle B=75^{\circ}, \angle D=75^{\circ}$
\qquad (each of 75°)

$$
\angle \mathrm{C} \cong \angle \mathrm{C}
$$

$\therefore \quad \triangle \mathrm{ABC} \sim$ \qquad
\qquad similarity test
2)

3)

If $\sec \theta=\frac{25}{7}$, find the value of $\tan \theta$.

$$
1+\tan ^{2} \theta=\sec ^{2} \theta
$$

$$
\therefore \quad 1+\tan ^{2} \theta=\left(\frac{25}{7}\right)
$$

$\therefore \quad \tan ^{2} \theta=\frac{625}{49}-$ \qquad

$$
=\frac{625-49}{49}
$$

$$
=\overline{\overline{49}}
$$

$\therefore \quad \tan \theta=\overline{\overline{7}}$
... (By taking square roots)
B) Solve the following questions. (Any four)
1)

If $\tan \theta+\cot \theta=2$ then $\tan ^{2} \theta+\cot ^{2} \theta=?$
2) Draw a circle with a diameter $A B$ length 6 cm . Draw a tangent to the circle from the endpoints of a diameter.
3)

From adjoining figure $\angle \mathrm{ABC}=90^{\circ} \angle \mathrm{DCB}=90^{\circ} \mathrm{AB}=6, \mathrm{DC}=8$ then $\frac{\mathrm{A}(\Delta \mathrm{ABC})}{\mathrm{A}(\Delta \mathrm{BCD})}=$?

4)

If $\sec \theta=\frac{25}{7}$ then find $\tan \theta$.
5) In the adjoining figure, seg RS is a diameter of a circle with centre O. Point T lies in the exterior of the circle. Prove that $\angle \mathrm{RTS}$ is an acute angle.

Q. 3 A) Complete the following activity. (Any one)
1)

In the given figure, find the length of $A D$ in terms of b and c.

ABC is a triangle, $\angle \mathrm{A}=90^{\circ}$
$\mathrm{AB}=\mathrm{c}, \mathrm{AC}=\mathrm{b}$
To find: $A D$ in terms of b and c
Solution: Area of $\triangle A B C=\frac{1}{2} A B \times A C=$ \qquad
and $\triangle A B C-\frac{1}{2} B C \times A D$
But $\mathrm{BC}=$ \qquad
= \qquad
Form (i) and (ii),
$=\frac{1}{2} B C \times A D=\frac{1}{2} b c$
$=B C \times A D=b . c$
= \qquad $=b c$ \qquad]

Hence AD = \qquad
2) In the figure $\angle \mathrm{L}=35^{\circ}$ find
(i) $\mathrm{m}(\operatorname{arc} \mathrm{MN})$
(ii) $\mathrm{m}(\operatorname{arc} \mathrm{MLN})$

(i) $\angle \mathrm{L}=\frac{1}{2} \mathrm{~m}(\operatorname{arc} \mathrm{MN})$
... (By inscribed angle theorem)
$\therefore \quad=\quad=\frac{1}{2} \mathrm{~m}(\operatorname{arc~MN})$
$\therefore \quad 2 \times 35=\mathrm{m}(\operatorname{arc} \mathrm{MN})=$ \qquad
(ii) $\quad \mathrm{m}(\operatorname{arc} \mathrm{MLN})=$ \qquad $-m(\operatorname{arc} M N)$
... [Definition of measures of arc]
$\therefore \quad \mathrm{m}(\operatorname{arc} \mathrm{MLN})=$ \qquad
B) Solve the following questions. (Any two)

1) If point $P(-4,6)$ divides the line segment $A B$ with $A(-6,10)$ and $B(r, s)$ in the ratio $2: 1$, find the co-ordinates of B.
2) Prove the following
$\frac{\cos A}{\operatorname{cosec} A+1}+\frac{\cos A}{\operatorname{cosec} A-1}=2 \tan A$
3) In figure, chord $M N$ and chord $R S$ intersect at point D.
(1) If $R D=15, D S=4, M D=8$ find $D N$
(2) If $R S=18, M D=9, D N=8$ find $D S$

4)

In $\triangle P Q R$, point S is the midpoint of side $Q R$. If $P Q=11, P R=17, P S=13$, find $Q R$.
Q. 4 Solve the following questions. (Any two)
1)

As shown in fig., $\mathrm{LK}=6 \sqrt{2}$ then
(1) $\mathrm{MK}=$?
(2) $\mathrm{MN}=$?

2)
$A(-3,-4), B(-5,0), C(3,0)$ are the vertices of $\triangle A B C$. Find the co-ordinates of the circumcentre of
$\triangle A B C$.
3)

(1) If $m(\operatorname{arc} C E)=54^{\circ}, m(\operatorname{arc} B D)=23^{\circ}$, find measure of $\angle C A E$.
(2) If $A B=4.2, B C=5.4, A E=12.0$, find $A D$
(3) If $A B=3.6, A C=9.0, A D=5.4$, find $A E$
Q. 5 Solve the following questions. (Any One)
1)

Show that $\frac{\cos ^{2} \theta}{1-\tan \theta}+\frac{\sin ^{3} \theta}{\sin \theta-\cos \theta}=1+\sin \theta \cdot \cos \theta$
2) Two circles with centres O and P intersects each other in the points C and D. Chord $A B$ of the circle with centre O touches the circle with centre P in the point E. Prove that $\angle A D E+\angle$ $B C E=180^{\circ}$.

